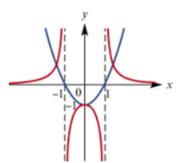
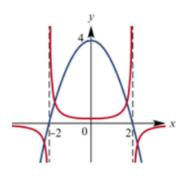
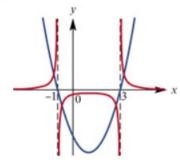

1 a

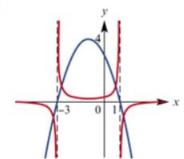

b


c

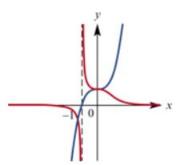
d

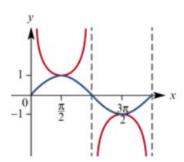


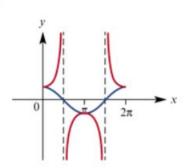
e

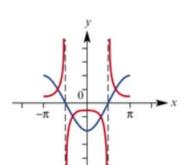


g

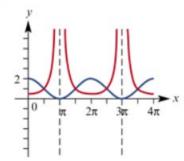

f


h

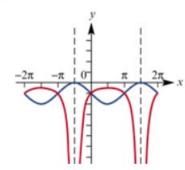

İ

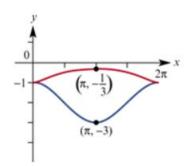


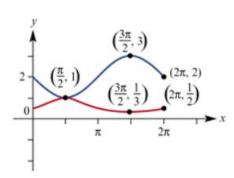
2 a

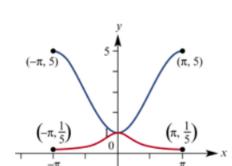


b



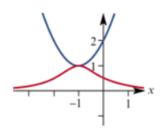

d

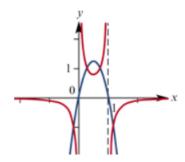

e



f

g


3 a


We complete the square so that
$$f(x) = x^2 + 2x + 2$$
$$= (x^2 + 2x + 1) - 1 + 2$$
$$= (x + 1)^2 + 1.$$

Therefore, a minimum turning point is located at point (-1,1).

b

h

To find points of intersection we solve two equations: f(x) = 1 and f(x) = -1. If f(x) = 1 then 5x(1-x)=1.

Solving this quadratic equation (using the quadratic equation or your calculator) gives

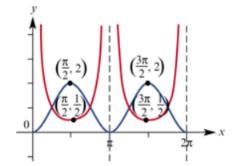
$$x = \frac{5 \pm \sqrt{5}}{10}.$$

Since f(x) = 1, the coordinates are

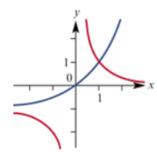
$$\left(\frac{5\pm\sqrt{5}}{10},1\right)$$
.

If f(x) = 1 then

$$5x(1-x)=-1.$$


Solving this quadratic equation gives

$$x = \frac{5 \pm 3\sqrt{5}}{10}.$$


Since f(x) = -1, the coordinates are

$$\left(rac{5\pm3\sqrt{5}}{10},-1
ight)$$
 .

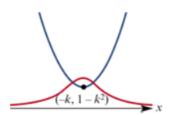
Notice that $y=2\sin^2 x$ will have the same x-intercepts as $y=2\sin x$ but will be non-negative for all values of x.

6

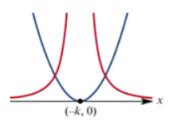
7 a We complete the square so that

$$f(x) = x^2 + 2kx + 1$$

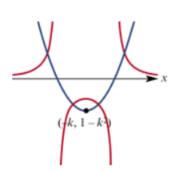
= $(x^2 + 2x + k^2) - k^2 + 1$
= $(x + k)^2 + 1 - k^2$.


Therefore, a minimum turning point is located at point $(-k, 1-k^2)$.

b i The graph of y = f(x) will have no x-intercept provided $1 - k^2 > 0$. This means that -1 < k < 1.


ii The graph of y=f(x) will have one x-intercept provided $1-k^2-0$. This means that $k=\pm 1$.

iii The graph of y=f(x) will have two x-intercepts provided $1-k^2<0$. This means that k>1 or k<-1.


Сį

ii

iii

